Acromag Combines A/D, D/A, Digital I/O and Counter/Timer Channels on their Newest AcroPack® Rugged Mini PCIe I/O Module

0

The new AP730 provides a mix of analog and digital input and output channels on a single mPCIe-based module for high-density, high-reliability data acquisition and control applications.

Acromag adds another military-grade measurement and control module to their AcroPack series of ruggedized mini PCIe I/O modules. The new AP730 multi-function I/O module performs analog input, analog output, discrete I/O and counter/timer functions. A variety of carrier cards can host up to four modules and are available in PCIe, VPX, XMC, CompactPCI-Serial, and mini-ITX embedded computing platforms. These boards are designed for commercial off-the shelf (COTS) applications in defense, aerospace, and industrial systems to provide a high-density mix of I/O signal interfaces in compact computing environments. With the AP730’s single-module combination of analog and digital I/O functions, system integrators can use remaining carrier mezzanine slots for serial, Ethernet, avionics, and CAN interfaces, or FPGA signal processing with other AcroPack modules.

Each AP730 module features a high-density mix of 28 I/O channels and 32-bit counter/timers in a 30 x 70mm card. Eight differential analog inputs (0-10V, ±10V ranges) feed a 16-bit A/D converter capable of sampling at nearly 800KHz. Four analog output channels have individual 16-bit D/A converters with a 7.5µS settling time. Programmable I/O ranges, sequencing, interrupts, memory allocation, and other controls are supported, as well as external triggering. The bidirectional digital I/O is configured as two 8-channel groups with TTL-compatible thresholds and programmable change-of-state or level interrupts. Counter/timers perform quadrature, frequency, and period measurement functions plus pulse width modulation and waveform generation operations. DMA transfer support efficiently moves data between module memory and the PCIe bus to unburden the system CPU and increase performance.

 

Share.

About Author

Leave A Reply